man r.covar () - Outputs a covariance/correlation matrix for user-specified raster map layer(s).
NAME
r.covar - Outputs a covariance/correlation matrix for user-specified raster map layer(s).
SYNOPSIS
r.covar
r.covar help
r.covar [-rq] map=string[,string,...]
Flags:
- "-r
- Print correlation matrix
- "-q
- Quiet
Parameters:
- "map=string[,string,...]
- Raster map(s) to be read
DESCRIPTION
r.covar outputs a covariance/correlation matrix for user-specified raster map layer(s). The output can be printed, or saved by redirecting output into a file.
The output is an N x N symmetric covariance (correlation) matrix, where N is the number of raster map layers specified on the command line. For example, r.covar map=layer.1,layer.2,layer.3
would produce a 3x3 matrix (values are example only):
1.000000 0.914922 0.889581
0.914922 1.000000 0.939452
0.889581 0.939452 1.000000
PRINCIPLE COMPONENTS
This module can be used as the first step of a principle components
transformation.
The covariance matrix would be input into a system which determines
eigen values and eigen vectors. An NxN covariance matrix would result in
N real eigen values and N eigen vectors (each composed of N real numbers).
In the above example, the eigen values and corresponding eigen vectors
for the covariance matrix are:
component eigen value eigen vector
1 1159.745202 < 0.691002 0.720528 0.480511 >
2 5.970541 < 0.711939 -0.635820 -0.070394 >
3 146.503197 < 0.226584 0.347470 -0.846873 >
The component corresponding to each vector can be produced using
r.mapcalc
as follows:
r.mapcalc 'pc.1 = 0.691002*layer.1 + 0.720528*layer.2 + 0.480511*layer.3'
r.mapcalc 'pc.2 = 0.711939*layer.1 - 0.635820*layer.2 - 0.070394*layer.3'
r.mapcalc 'pc.3 = 0.226584*layer.1 + 0.347470*layer.2 - 0.846873*layer.3'
Note that based on the relative sizes of the eigen values, pc.1 will contain about 88% of the variance in the data set, pc.2 will contain about 1% of the variance in the data set, and pc.3 will contain about 11% of the variance in the data set. Also, note that the range of values produced in pc.1, pc.2, and pc.3 will not (in general) be the same as those for layer.1, layer.2, and layer.3. It may be necessary to rescale pc.1, pc.2 and pc.3 to the desired range (e.g. 0-255). This can be done with r.rescale.
NOTES
The module m.eigensystem in src.contrib can be compiled and used to generate the eigen values and vectors.
SEE ALSO
i.pca, m.eigensystem, r.mapcalc, r.rescale
AUTHOR
Michael Shapiro, U.S. Army Construction Engineering Research Laboratory
Last changed: $Date: 2003/05/06 12:57:35 $
Help Index