man chbev (Fonctions bibliothèques) - compute all the eigenvalues and, optionally, eigenvectors of a complex Hermitian band matrix A
NAME
CHBEV - compute all the eigenvalues and, optionally, eigenvectors of a complex Hermitian band matrix A
SYNOPSIS
- SUBROUTINE CHBEV(
- JOBZ, UPLO, N, KD, AB, LDAB, W, Z, LDZ, WORK, RWORK, INFO )
- CHARACTER JOBZ, UPLO
- INTEGER INFO, KD, LDAB, LDZ, N
- REAL RWORK( * ), W( * )
- COMPLEX AB( LDAB, * ), WORK( * ), Z( LDZ, * )
PURPOSE
CHBEV computes all the eigenvalues and, optionally, eigenvectors of a complex Hermitian band matrix A.
ARGUMENTS
- JOBZ (input) CHARACTER*1
- = 'N': Compute eigenvalues only;
= 'V': Compute eigenvalues and eigenvectors. - UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.- N (input) INTEGER
- The order of the matrix A. N >= 0.
- KD (input) INTEGER
- The number of superdiagonals of the matrix A if UPLO = 'U', or the number of subdiagonals if UPLO = 'L'. KD >= 0.
- AB (input/output) COMPLEX array, dimension (LDAB, N)
- On entry, the upper or lower triangle of the Hermitian band matrix A, stored in the first KD+1 rows of the array. The j-th column of A is stored in the j-th column of the array AB as follows: if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
On exit, AB is overwritten by values generated during the reduction to tridiagonal form. If UPLO = 'U', the first superdiagonal and the diagonal of the tridiagonal matrix T are returned in rows KD and KD+1 of AB, and if UPLO = 'L', the diagonal and first subdiagonal of T are returned in the first two rows of AB.
- LDAB (input) INTEGER
- The leading dimension of the array AB. LDAB >= KD + 1.
- W (output) REAL array, dimension (N)
- If INFO = 0, the eigenvalues in ascending order.
- Z (output) COMPLEX array, dimension (LDZ, N)
- If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal eigenvectors of the matrix A, with the i-th column of Z holding the eigenvector associated with W(i). If JOBZ = 'N', then Z is not referenced.
- LDZ (input) INTEGER
- The leading dimension of the array Z. LDZ >= 1, and if JOBZ = 'V', LDZ >= max(1,N).
- WORK (workspace) COMPLEX array, dimension (N)
- RWORK (workspace) REAL array, dimension (max(1,3*N-2))
- INFO (output) INTEGER
- = 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: if INFO = i, the algorithm failed to converge; i off-diagonal elements of an intermediate tridiagonal form did not converge to zero.