man clarfb (Fonctions bibliothèques) - applie a complex block reflector H or its transpose H' to a complex M-by-N matrix C, from either the left or the right
NAME
CLARFB - applie a complex block reflector H or its transpose H' to a complex M-by-N matrix C, from either the left or the right
SYNOPSIS
- SUBROUTINE CLARFB(
- SIDE, TRANS, DIRECT, STOREV, M, N, K, V, LDV, T, LDT, C, LDC, WORK, LDWORK )
- CHARACTER DIRECT, SIDE, STOREV, TRANS
- INTEGER K, LDC, LDT, LDV, LDWORK, M, N
- COMPLEX C( LDC, * ), T( LDT, * ), V( LDV, * ), WORK( LDWORK, * )
PURPOSE
CLARFB applies a complex block reflector H or its transpose H' to a complex M-by-N matrix C, from either the left or the right.
ARGUMENTS
- SIDE (input) CHARACTER*1
- = 'L': apply H or H' from the Left
= 'R': apply H or H' from the Right - TRANS (input) CHARACTER*1
= 'N': apply H (No transpose)
= 'C': apply H' (Conjugate transpose)- DIRECT (input) CHARACTER*1
- Indicates how H is formed from a product of elementary
reflectors
= 'F': H = H(1) H(2) . . . H(k) (Forward)
= 'B': H = H(k) . . . H(2) H(1) (Backward) - STOREV (input) CHARACTER*1
- Indicates how the vectors which define the elementary
reflectors are stored:
= 'C': Columnwise
= 'R': Rowwise - M (input) INTEGER
- The number of rows of the matrix C.
- N (input) INTEGER
- The number of columns of the matrix C.
- K (input) INTEGER
- The order of the matrix T (= the number of elementary reflectors whose product defines the block reflector).
- V (input) COMPLEX array, dimension
- (LDV,K) if STOREV = 'C' (LDV,M) if STOREV = 'R' and SIDE = 'L' (LDV,N) if STOREV = 'R' and SIDE = 'R' The matrix V. See further details.
- LDV (input) INTEGER
- The leading dimension of the array V. If STOREV = 'C' and SIDE = 'L', LDV >= max(1,M); if STOREV = 'C' and SIDE = 'R', LDV >= max(1,N); if STOREV = 'R', LDV >= K.
- T (input) COMPLEX array, dimension (LDT,K)
- The triangular K-by-K matrix T in the representation of the block reflector.
- LDT (input) INTEGER
- The leading dimension of the array T. LDT >= K.
- C (input/output) COMPLEX array, dimension (LDC,N)
- On entry, the M-by-N matrix C. On exit, C is overwritten by H*C or H'*C or C*H or C*H'.
- LDC (input) INTEGER
- The leading dimension of the array C. LDC >= max(1,M).
- WORK (workspace) COMPLEX array, dimension (LDWORK,K)
- LDWORK (input) INTEGER
- The leading dimension of the array WORK. If SIDE = 'L', LDWORK >= max(1,N); if SIDE = 'R', LDWORK >= max(1,M).