man dlarzt (Fonctions bibliothèques) - form the triangular factor T of a real block reflector H of order > n, which is defined as a product of k elementary reflectors
NAME
DLARZT - form the triangular factor T of a real block reflector H of order > n, which is defined as a product of k elementary reflectors
SYNOPSIS
- SUBROUTINE DLARZT(
- DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT )
- CHARACTER DIRECT, STOREV
- INTEGER K, LDT, LDV, N
- DOUBLE PRECISION T( LDT, * ), TAU( * ), V( LDV, * )
PURPOSE
DLARZT forms the triangular factor T of a real block reflector H of order > n, which is defined as a product of k elementary reflectors. If DIRECT = 'F', H = H(1) H(2) . . . H(k) and T is upper triangular;
If DIRECT = 'B', H = H(k) . . . H(2) H(1) and T is lower triangular.
If STOREV = 'C', the vector which defines the elementary reflector
H(i) is stored in the i-th column of the array V, and
   H  =  I - V * T * V'
If STOREV = 'R', the vector which defines the elementary reflector
H(i) is stored in the i-th row of the array V, and
   H  =  I - V' * T * V
Currently, only STOREV = 'R' and DIRECT = 'B' are supported.
ARGUMENTS
- DIRECT (input) CHARACTER*1
- Specifies the order in which the elementary reflectors are
multiplied to form the block reflector:
 = 'F': H = H(1) H(2) . . . H(k) (Forward, not supported yet)
 = 'B': H = H(k) . . . H(2) H(1) (Backward)
- STOREV (input) CHARACTER*1
- Specifies how the vectors which define the elementary
reflectors are stored (see also Further Details):
 = 'R': rowwise
- N (input) INTEGER
- The order of the block reflector H. N >= 0.
- K (input) INTEGER
- The order of the triangular factor T (= the number of elementary reflectors). K >= 1.
- V (input/output) DOUBLE PRECISION array, dimension
- (LDV,K) if STOREV = 'C' (LDV,N) if STOREV = 'R' The matrix V. See further details.
- LDV (input) INTEGER
- The leading dimension of the array V. If STOREV = 'C', LDV >= max(1,N); if STOREV = 'R', LDV >= K.
- TAU (input) DOUBLE PRECISION array, dimension (K)
- TAU(i) must contain the scalar factor of the elementary reflector H(i).
- T (output) DOUBLE PRECISION array, dimension (LDT,K)
- The k by k triangular factor T of the block reflector. If DIRECT = 'F', T is upper triangular; if DIRECT = 'B', T is lower triangular. The rest of the array is not used.
- LDT (input) INTEGER
- The leading dimension of the array T. LDT >= K.
FURTHER DETAILS
Based on contributions by
  A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
The shape of the matrix V and the storage of the vectors which define
the H(i) is best illustrated by the following example with n = 5 and
k = 3. The elements equal to 1 are not stored; the corresponding
array elements are modified but restored on exit. The rest of the
array is not used.
DIRECT = 'F' and STOREV = 'C': DIRECT = 'F' and STOREV = 'R':
                                            ______V_____
       ( v1 v2 v3 )                        /            
       ( v1 v2 v3 )                      ( v1 v1 v1 v1 v1 . . . . 1 )
   V = ( v1 v2 v3 )                      ( v2 v2 v2 v2 v2 . . . 1   )
       ( v1 v2 v3 )                      ( v3 v3 v3 v3 v3 . . 1     )
       ( v1 v2 v3 )
          .  .  .
          .  .  .
          1  .  .
             1  .
                1
DIRECT = 'B' and STOREV = 'C': DIRECT = 'B' and STOREV = 'R':
                                                      ______V_____
          1                                          /            
          .  1                           ( 1 . . . . v1 v1 v1 v1 v1 )
          .  .  1                        ( . 1 . . . v2 v2 v2 v2 v2 )
          .  .  .                        ( . . 1 . . v3 v3 v3 v3 v3 )
          .  .  .
       ( v1 v2 v3 )
       ( v1 v2 v3 )
   V = ( v1 v2 v3 )
       ( v1 v2 v3 )
       ( v1 v2 v3 )