man dtzrqf (Fonctions bibliothèques) - routine is deprecated and has been replaced by routine DTZRZF
NAME
DTZRQF - routine is deprecated and has been replaced by routine DTZRZF
SYNOPSIS
- SUBROUTINE DTZRQF(
- M, N, A, LDA, TAU, INFO )
- INTEGER INFO, LDA, M, N
- DOUBLE PRECISION A( LDA, * ), TAU( * )
PURPOSE
This routine is deprecated and has been replaced by routine DTZRZF. DTZRQF reduces the M-by-N ( M<=N ) real upper trapezoidal matrix A to upper triangular form by means of orthogonal transformations.
The upper trapezoidal matrix A is factored as
A = ( R 0 ) * Z,
where Z is an N-by-N orthogonal matrix and R is an M-by-M upper
triangular matrix.
ARGUMENTS
- M (input) INTEGER
- The number of rows of the matrix A. M >= 0.
- N (input) INTEGER
- The number of columns of the matrix A. N >= M.
- A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
- On entry, the leading M-by-N upper trapezoidal part of the array A must contain the matrix to be factorized. On exit, the leading M-by-M upper triangular part of A contains the upper triangular matrix R, and elements M+1 to N of the first M rows of A, with the array TAU, represent the orthogonal matrix Z as a product of M elementary reflectors.
- LDA (input) INTEGER
- The leading dimension of the array A. LDA >= max(1,M).
- TAU (output) DOUBLE PRECISION array, dimension (M)
- The scalar factors of the elementary reflectors.
- INFO (output) INTEGER
- = 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
FURTHER DETAILS
The factorization is obtained by Householder's method. The kth
transformation matrix, Z( k ), which is used to introduce zeros into
the ( m - k + 1 )th row of A, is given in the form
Z( k ) = ( I 0 ),
( 0 T( k ) )
where
T( k ) = I - tau*u( k )*u( k )', u( k ) = ( 1 ), ( 0 ) ( z( k ) )
tau is a scalar and z( k ) is an ( n - m ) element vector.
tau and z( k ) are chosen to annihilate the elements of the kth row
of X.
The scalar tau is returned in the kth element of TAU and the vector
u( k ) in the kth row of A, such that the elements of z( k ) are
in a( k, m + 1 ), ..., a( k, n ). The elements of R are returned in
the upper triangular part of A.
Z is given by
Z = Z( 1 ) * Z( 2 ) * ... * Z( m ).