man pdlarfb (Fonctions bibliothèques) - applie a real block reflector Q or its transpose Q**T to a real distributed M-by-N matrix sub( C ) = C(IC:IC+M-1,JC:JC+N-1)
NAME
PDLARFB - applie a real block reflector Q or its transpose Q**T to a real distributed M-by-N matrix sub( C ) = C(IC:IC+M-1,JC:JC+N-1)
SYNOPSIS
- SUBROUTINE PDLARFB(
- SIDE, TRANS, DIRECT, STOREV, M, N, K, V, IV, JV, DESCV, T, C, IC, JC, DESCC, WORK )
- CHARACTER SIDE, TRANS, DIRECT, STOREV
- INTEGER IC, IV, JC, JV, K, M, N
- INTEGER DESCC( * ), DESCV( * )
- DOUBLE PRECISION C( * ), T( * ), V( * ), WORK( * )
PURPOSE
PDLARFB applies a real block reflector Q or its transpose Q**T to a
real distributed M-by-N matrix sub( C ) = C(IC:IC+M-1,JC:JC+N-1)
from the left or the right.
Notes
=====
Each global data object is described by an associated description
vector. This vector stores the information required to establish
the mapping between an object element and its corresponding process
and memory location.
Let A be a generic term for any 2D block cyclicly distributed array.
Such a global array has an associated description vector DESCA.
In the following comments, the character _ should be read as
"of the global array".
NOTATION STORED IN EXPLANATION
--------------- -------------- --------------------------------------
DTYPE_A(global) DESCA( DTYPE_ )The descriptor type. In this case,
DTYPE_A = 1.
CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
the BLACS process grid A is distribu-
ted over. The context itself is glo-
bal, but the handle (the integer
value) may vary.
M_A (global) DESCA( M_ ) The number of rows in the global
array A.
N_A (global) DESCA( N_ ) The number of columns in the global
array A.
MB_A (global) DESCA( MB_ ) The blocking factor used to distribute
the rows of the array.
NB_A (global) DESCA( NB_ ) The blocking factor used to distribute
the columns of the array.
RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
row of the array A is distributed.
CSRC_A (global) DESCA( CSRC_ ) The process column over which the
first column of the array A is
distributed.
LLD_A (local) DESCA( LLD_ ) The leading dimension of the local
array. LLD_A >= MAX(1,LOCr(M_A)).
Let K be the number of rows or columns of a distributed matrix,
and assume that its process grid has dimension p x q.
LOCr( K ) denotes the number of elements of K that a process
would receive if K were distributed over the p processes of its
process column.
Similarly, LOCc( K ) denotes the number of elements of K that a
process would receive if K were distributed over the q processes of
its process row.
The values of LOCr() and LOCc() may be determined via a call to the
ScaLAPACK tool function, NUMROC:
LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
An upper bound for these quantities may be computed by:
LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
ARGUMENTS
- SIDE (global input) CHARACTER
- = 'L': apply Q or Q**T from the Left;
= 'R': apply Q or Q**T from the Right. - TRANS (global input) CHARACTER
= 'N': No transpose, apply Q;
= 'T': Transpose, apply Q**T.- DIRECT (global input) CHARACTER
- Indicates how Q is formed from a product of elementary
reflectors
= 'F': Q = H(1) H(2) . . . H(k) (Forward)
= 'B': Q = H(k) . . . H(2) H(1) (Backward) - STOREV (global input) CHARACTER
- Indicates how the vectors which define the elementary
reflectors are stored:
= 'C': Columnwise
= 'R': Rowwise - M (global input) INTEGER
- The number of rows to be operated on i.e the number of rows of the distributed submatrix sub( C ). M >= 0.
- N (global input) INTEGER
- The number of columns to be operated on i.e the number of columns of the distributed submatrix sub( C ). N >= 0.
- K (global input) INTEGER
- The order of the matrix T (= the number of elementary reflectors whose product defines the block reflector).
- V (local input) DOUBLE PRECISION pointer into the local memory
- to an array of dimension ( LLD_V, LOCc(JV+K-1) ) if STOREV = 'C', ( LLD_V, LOCc(JV+M-1)) if STOREV = 'R' and SIDE = 'L', ( LLD_V, LOCc(JV+N-1) ) if STOREV = 'R' and SIDE = 'R'. It contains the local pieces of the distributed vectors V representing the Householder transformation. See further details. If STOREV = 'C' and SIDE = 'L', LLD_V >= MAX(1,LOCr(IV+M-1)); if STOREV = 'C' and SIDE = 'R', LLD_V >= MAX(1,LOCr(IV+N-1)); if STOREV = 'R', LLD_V >= LOCr(IV+K-1).
- IV (global input) INTEGER
- The row index in the global array V indicating the first row of sub( V ).
- JV (global input) INTEGER
- The column index in the global array V indicating the first column of sub( V ).
- DESCV (global and local input) INTEGER array of dimension DLEN_.
- The array descriptor for the distributed matrix V.
- T (local input) DOUBLE PRECISION array, dimension MB_V by MB_V
- if STOREV = 'R' and NB_V by NB_V if STOREV = 'C'. The trian- gular matrix T in the representation of the block reflector.
- C (local input/local output) DOUBLE PRECISION pointer into the
- local memory to an array of dimension (LLD_C,LOCc(JC+N-1)). On entry, the M-by-N distributed matrix sub( C ). On exit, sub( C ) is overwritten by Q*sub( C ) or Q'*sub( C ) or sub( C )*Q or sub( C )*Q'.
- IC (global input) INTEGER
- The row index in the global array C indicating the first row of sub( C ).
- JC (global input) INTEGER
- The column index in the global array C indicating the first column of sub( C ).
- DESCC (global and local input) INTEGER array of dimension DLEN_.
- The array descriptor for the distributed matrix C.
- WORK (local workspace) DOUBLE PRECISION array, dimension (LWORK)
- If STOREV = 'C', if SIDE = 'L', LWORK >= ( NqC0 + MpC0 ) * K else if SIDE = 'R', LWORK >= ( NqC0 + MAX( NpV0 + NUMROC( NUMROC( N+ICOFFC, NB_V, 0, 0, NPCOL ), NB_V, 0, 0, LCMQ ), MpC0 ) ) * K end if else if STOREV = 'R', if SIDE = 'L', LWORK >= ( MpC0 + MAX( MqV0 + NUMROC( NUMROC( M+IROFFC, MB_V, 0, 0, NPROW ), MB_V, 0, 0, LCMP ), NqC0 ) ) * K else if SIDE = 'R', LWORK >= ( MpC0 + NqC0 ) * K end if end if
where LCMQ = LCM / NPCOL with LCM = ICLM( NPROW, NPCOL ),
IROFFV = MOD( IV-1, MB_V ), ICOFFV = MOD( JV-1, NB_V ), IVROW = INDXG2P( IV, MB_V, MYROW, RSRC_V, NPROW ), IVCOL = INDXG2P( JV, NB_V, MYCOL, CSRC_V, NPCOL ), MqV0 = NUMROC( M+ICOFFV, NB_V, MYCOL, IVCOL, NPCOL ), NpV0 = NUMROC( N+IROFFV, MB_V, MYROW, IVROW, NPROW ),
IROFFC = MOD( IC-1, MB_C ), ICOFFC = MOD( JC-1, NB_C ), ICROW = INDXG2P( IC, MB_C, MYROW, RSRC_C, NPROW ), ICCOL = INDXG2P( JC, NB_C, MYCOL, CSRC_C, NPCOL ), MpC0 = NUMROC( M+IROFFC, MB_C, MYROW, ICROW, NPROW ), NpC0 = NUMROC( N+ICOFFC, MB_C, MYROW, ICROW, NPROW ), NqC0 = NUMROC( N+ICOFFC, NB_C, MYCOL, ICCOL, NPCOL ),
ILCM, INDXG2P and NUMROC are ScaLAPACK tool functions; MYROW, MYCOL, NPROW and NPCOL can be determined by calling the subroutine BLACS_GRIDINFO.
Alignment requirements ======================
The distributed submatrices V(IV:*, JV:*) and C(IC:IC+M-1,JC:JC+N-1) must verify some alignment properties, namely the following expressions should be true:
If STOREV = 'Columnwise' If SIDE = 'Left', ( MB_V.EQ.MB_C .AND. IROFFV.EQ.IROFFC .AND. IVROW.EQ.ICROW ) If SIDE = 'Right', ( MB_V.EQ.NB_C .AND. IROFFV.EQ.ICOFFC ) else if STOREV = 'Rowwise' If SIDE = 'Left', ( NB_V.EQ.MB_C .AND. ICOFFV.EQ.IROFFC ) If SIDE = 'Right', ( NB_V.EQ.NB_C .AND. ICOFFV.EQ.ICOFFC .AND. IVCOL.EQ.ICCOL ) end if