man pzungl2 (Fonctions bibliothèques) - generate an M-by-N complex distributed matrix Q denoting A(IA:IA+M-1,JA:JA+N-1) with orthonormal rows, which is defined as the first M rows of a product of K elementary reflectors of order N Q = H(k)'

NAME

PZUNGL2 - generate an M-by-N complex distributed matrix Q denoting A(IA:IA+M-1,JA:JA+N-1) with orthonormal rows, which is defined as the first M rows of a product of K elementary reflectors of order N Q = H(k)'

SYNOPSIS

SUBROUTINE PZUNGL2(
M, N, K, A, IA, JA, DESCA, TAU, WORK, LWORK, INFO )
INTEGER IA, INFO, JA, K, LWORK, M, N
INTEGER DESCA( * )
COMPLEX*16 A( * ), TAU( * ), WORK( * )

PURPOSE

PZUNGL2 generates an M-by-N complex distributed matrix Q denoting A(IA:IA+M-1,JA:JA+N-1) with orthonormal rows, which is defined as the first M rows of a product of K elementary reflectors of order N

as returned by PZGELQF.

Notes

=====

Each global data object is described by an associated description vector. This vector stores the information required to establish the mapping between an object element and its corresponding process and memory location.

Let A be a generic term for any 2D block cyclicly distributed array. Such a global array has an associated description vector DESCA. In the following comments, the character _ should be read as "of the global array".

NOTATION STORED IN EXPLANATION

--------------- -------------- -------------------------------------- DTYPE_A(global) DESCA( DTYPE_ )The descriptor type. In this case, DTYPE_A = 1.

CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating the BLACS process grid A is distribu- ted over. The context itself is glo- bal, but the handle (the integer value) may vary.

M_A (global) DESCA( M_ ) The number of rows in the global array A.

N_A (global) DESCA( N_ ) The number of columns in the global array A.

MB_A (global) DESCA( MB_ ) The blocking factor used to distribute the rows of the array.

NB_A (global) DESCA( NB_ ) The blocking factor used to distribute the columns of the array.

RSRC_A (global) DESCA( RSRC_ ) The process row over which the first row of the array A is distributed. CSRC_A (global) DESCA( CSRC_ ) The process column over which the first column of the array A is distributed.

LLD_A (local) DESCA( LLD_ ) The leading dimension of the local array. LLD_A >= MAX(1,LOCr(M_A)).

Let K be the number of rows or columns of a distributed matrix, and assume that its process grid has dimension p x q.

LOCr( K ) denotes the number of elements of K that a process would receive if K were distributed over the p processes of its process column.

Similarly, LOCc( K ) denotes the number of elements of K that a process would receive if K were distributed over the q processes of its process row.

The values of LOCr() and LOCc() may be determined via a call to the ScaLAPACK tool function, NUMROC:

LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ), LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ). An upper bound for these quantities may be computed by:

LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A

LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A

ARGUMENTS

M (global input) INTEGER
The number of rows to be operated on i.e the number of rows of the distributed submatrix Q. M >= 0.
N (global input) INTEGER
The number of columns to be operated on i.e the number of columns of the distributed submatrix Q. N >= M >= 0.
K (global input) INTEGER
The number of elementary reflectors whose product defines the matrix Q. M >= K >= 0.
A (local input/local output) COMPLEX*16 pointer into the
local memory to an array of dimension (LLD_A,LOCc(JA+N-1)). On entry, the i-th row must contain the vector which defines the elementary reflector H(i), IA <= i <= IA+K-1, as returned by PZGELQF in the K rows of its distributed matrix argument A(IA:IA+K-1,JA:*). On exit, this array contains the local pieces of the M-by-N distributed matrix Q.
IA (global input) INTEGER
The row index in the global array A indicating the first row of sub( A ).
JA (global input) INTEGER
The column index in the global array A indicating the first column of sub( A ).
DESCA (global and local input) INTEGER array of dimension DLEN_.
The array descriptor for the distributed matrix A.
TAU (local input) COMPLEX*16, array, dimension LOCr(IA+K-1).
This array contains the scalar factors TAU(i) of the elementary reflectors H(i) as returned by PZGELQF. TAU is tied to the distributed matrix A.
WORK (local workspace/local output) COMPLEX*16 array,
dimension (LWORK) On exit, WORK(1) returns the minimal and optimal LWORK.
LWORK (local or global input) INTEGER
The dimension of the array WORK. LWORK is local input and must be at least LWORK >= NqA0 + MAX( 1, MpA0 ), where

IROFFA = MOD( IA-1, MB_A ), ICOFFA = MOD( JA-1, NB_A ), IAROW = INDXG2P( IA, MB_A, MYROW, RSRC_A, NPROW ), IACOL = INDXG2P( JA, NB_A, MYCOL, CSRC_A, NPCOL ), MpA0 = NUMROC( M+IROFFA, MB_A, MYROW, IAROW, NPROW ), NqA0 = NUMROC( N+ICOFFA, NB_A, MYCOL, IACOL, NPCOL ),

INDXG2P and NUMROC are ScaLAPACK tool functions; MYROW, MYCOL, NPROW and NPCOL can be determined by calling the subroutine BLACS_GRIDINFO.

If LWORK = -1, then LWORK is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by PXERBLA.

INFO (local output) INTEGER
= 0: successful exit

< 0: If the i-th argument is an array and the j-entry had an illegal value, then INFO = -(i*100+j), if the i-th argument is a scalar and had an illegal value, then INFO = -i.