man sgerqf (Fonctions bibliothèques) - compute an RQ factorization of a real M-by-N matrix A

NAME

SGERQF - compute an RQ factorization of a real M-by-N matrix A

SYNOPSIS

SUBROUTINE SGERQF(
M, N, A, LDA, TAU, WORK, LWORK, INFO )
INTEGER INFO, LDA, LWORK, M, N
REAL A( LDA, * ), TAU( * ), WORK( * )

PURPOSE

SGERQF computes an RQ factorization of a real M-by-N matrix A: A = R * Q.

ARGUMENTS

M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= 0.
A (input/output) REAL array, dimension (LDA,N)
On entry, the M-by-N matrix A. On exit, if m <= n, the upper triangle of the subarray A(1:m,n-m+1:n) contains the M-by-M upper triangular matrix R; if m >= n, the elements on and above the (m-n)-th subdiagonal contain the M-by-N upper trapezoidal matrix R; the remaining elements, with the array TAU, represent the orthogonal matrix Q as a product of min(m,n) elementary reflectors (see Further Details). LDA (input) INTEGER The leading dimension of the array A. LDA >= max(1,M).
TAU (output) REAL array, dimension (min(M,N))
The scalar factors of the elementary reflectors (see Further Details).
WORK (workspace/output) REAL array, dimension (LWORK)
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= max(1,M). For optimum performance LWORK >= M*NB, where NB is the optimal blocksize.

If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA.

INFO (output) INTEGER
= 0: successful exit

< 0: if INFO = -i, the i-th argument had an illegal value

FURTHER DETAILS

The matrix Q is represented as a product of elementary reflectors

Q = H(1) H(2) . . . H(k), where k = min(m,n).

Each H(i) has the form

H(i) = I - tau * v * v'

where tau is a real scalar, and v is a real vector with

v(n-k+i+1:n) = 0 and v(n-k+i) = 1; v(1:n-k+i-1) is stored on exit in A(m-k+i,1:n-k+i-1), and tau in TAU(i).