man spteqr (Fonctions bibliothèques) - compute all eigenvalues and, optionally, eigenvectors of a symmetric positive definite tridiagonal matrix by first factoring the matrix using SPTTRF, and then calling SBDSQR to compute the singular values of the bidiagonal factor
NAME
SPTEQR - compute all eigenvalues and, optionally, eigenvectors of a symmetric positive definite tridiagonal matrix by first factoring the matrix using SPTTRF, and then calling SBDSQR to compute the singular values of the bidiagonal factor
SYNOPSIS
- SUBROUTINE SPTEQR(
- COMPZ, N, D, E, Z, LDZ, WORK, INFO )
- CHARACTER COMPZ
- INTEGER INFO, LDZ, N
- REAL D( * ), E( * ), WORK( * ), Z( LDZ, * )
PURPOSE
SPTEQR computes all eigenvalues and, optionally, eigenvectors of a symmetric positive definite tridiagonal matrix by first factoring the matrix using SPTTRF, and then calling SBDSQR to compute the singular values of the bidiagonal factor. This routine computes the eigenvalues of the positive definite tridiagonal matrix to high relative accuracy. This means that if the eigenvalues range over many orders of magnitude in size, then the small eigenvalues and corresponding eigenvectors will be computed more accurately than, for example, with the standard QR method.
The eigenvectors of a full or band symmetric positive definite matrix
can also be found if SSYTRD, SSPTRD, or SSBTRD has been used to
reduce this matrix to tridiagonal form. (The reduction to tridiagonal
form, however, may preclude the possibility of obtaining high
relative accuracy in the small eigenvalues of the original matrix, if
these eigenvalues range over many orders of magnitude.)
ARGUMENTS
- COMPZ (input) CHARACTER*1
- = 'N': Compute eigenvalues only.
= 'V': Compute eigenvectors of original symmetric matrix also. Array Z contains the orthogonal matrix used to reduce the original matrix to tridiagonal form. = 'I': Compute eigenvectors of tridiagonal matrix also. - N (input) INTEGER
- The order of the matrix. N >= 0.
- D (input/output) REAL array, dimension (N)
- On entry, the n diagonal elements of the tridiagonal matrix. On normal exit, D contains the eigenvalues, in descending order.
- E (input/output) REAL array, dimension (N-1)
- On entry, the (n-1) subdiagonal elements of the tridiagonal matrix. On exit, E has been destroyed.
- Z (input/output) REAL array, dimension (LDZ, N)
- On entry, if COMPZ = 'V', the orthogonal matrix used in the reduction to tridiagonal form. On exit, if COMPZ = 'V', the orthonormal eigenvectors of the original symmetric matrix; if COMPZ = 'I', the orthonormal eigenvectors of the tridiagonal matrix. If INFO > 0 on exit, Z contains the eigenvectors associated with only the stored eigenvalues. If COMPZ = 'N', then Z is not referenced.
- LDZ (input) INTEGER
- The leading dimension of the array Z. LDZ >= 1, and if COMPZ = 'V' or 'I', LDZ >= max(1,N).
- WORK (workspace) REAL array, dimension (4*N)
- INFO (output) INTEGER
- = 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
> 0: if INFO = i, and i is: <= N the Cholesky factorization of the matrix could not be performed because the i-th principal minor was not positive definite. > N the SVD algorithm failed to converge; if INFO = N+i, i off-diagonal elements of the bidiagonal factor did not converge to zero.