man zgeqr2 (Fonctions bibliothèques) - compute a QR factorization of a complex m by n matrix A
NAME
ZGEQR2 - compute a QR factorization of a complex m by n matrix A
SYNOPSIS
- SUBROUTINE ZGEQR2(
- M, N, A, LDA, TAU, WORK, INFO )
- INTEGER INFO, LDA, M, N
- COMPLEX*16 A( LDA, * ), TAU( * ), WORK( * )
PURPOSE
ZGEQR2 computes a QR factorization of a complex m by n matrix A: A = Q * R.
ARGUMENTS
- M (input) INTEGER
- The number of rows of the matrix A. M >= 0.
- N (input) INTEGER
- The number of columns of the matrix A. N >= 0.
- A (input/output) COMPLEX*16 array, dimension (LDA,N)
- On entry, the m by n matrix A. On exit, the elements on and above the diagonal of the array contain the min(m,n) by n upper trapezoidal matrix R (R is upper triangular if m >= n); the elements below the diagonal, with the array TAU, represent the unitary matrix Q as a product of elementary reflectors (see Further Details). LDA (input) INTEGER The leading dimension of the array A. LDA >= max(1,M).
- TAU (output) COMPLEX*16 array, dimension (min(M,N))
- The scalar factors of the elementary reflectors (see Further Details).
- WORK (workspace) COMPLEX*16 array, dimension (N)
- INFO (output) INTEGER
- = 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
FURTHER DETAILS
The matrix Q is represented as a product of elementary reflectors
Q = H(1) H(2) . . . H(k), where k = min(m,n).
Each H(i) has the form
H(i) = I - tau * v * v'
where tau is a complex scalar, and v is a complex vector with
v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i),
and tau in TAU(i).