man ztgsy2 (Fonctions bibliothèques) - solve the generalized Sylvester equation A * R - L * B = scale * C (1) D * R - L * E = scale * F using Level 1 and 2 BLAS, where R and L are unknown M-by-N matrices,
NAME
ZTGSY2 - solve the generalized Sylvester equation A * R - L * B = scale * C (1) D * R - L * E = scale * F using Level 1 and 2 BLAS, where R and L are unknown M-by-N matrices,
SYNOPSIS
- SUBROUTINE ZTGSY2(
- TRANS, IJOB, M, N, A, LDA, B, LDB, C, LDC, D, LDD, E, LDE, F, LDF, SCALE, RDSUM, RDSCAL, INFO )
- CHARACTER TRANS
- INTEGER IJOB, INFO, LDA, LDB, LDC, LDD, LDE, LDF, M, N
- DOUBLE PRECISION RDSCAL, RDSUM, SCALE
- COMPLEX*16 A( LDA, * ), B( LDB, * ), C( LDC, * ), D( LDD, * ), E( LDE, * ), F( LDF, * )
PURPOSE
ZTGSY2 solves the generalized Sylvester equation A * R - L * B = scale * C (1) D * R - L * E = scale * F using Level 1 and 2 BLAS, where R and L are unknown M-by-N matrices, (A, D), (B, E) and (C, F) are given matrix pairs of size M-by-M,
N-by-N and M-by-N, respectively. A, B, D and E are upper triangular
(i.e., (A,D) and (B,E) in generalized Schur form).
The solution (R, L) overwrites (C, F). 0 <= SCALE <= 1 is an output
scaling factor chosen to avoid overflow.
In matrix notation solving equation (1) corresponds to solve
Zx = scale * b, where Z is defined as
Z = [ kron(In, A) -kron(B', Im) ] (2)
[ kron(In, D) -kron(E', Im) ],
Ik is the identity matrix of size k and X' is the transpose of X. kron(X, Y) is the Kronecker product between the matrices X and Y.
If TRANS = 'C', y in the conjugate transposed system Z'y = scale*b is solved for, which is equivalent to solve for R and L in
A' * R + D' * L = scale * C (3)
R * B' + L * E' = scale * -F
This case is used to compute an estimate of Dif[(A, D), (B, E)] =
= sigma_min(Z) using reverse communicaton with ZLACON.
ZTGSY2 also (IJOB >= 1) contributes to the computation in ZTGSYL
of an upper bound on the separation between to matrix pairs. Then
the input (A, D), (B, E) are sub-pencils of two matrix pairs in
ZTGSYL.
ARGUMENTS
- TRANS (input) CHARACTER
- = 'N', solve the generalized Sylvester equation (1). = 'T': solve the 'transposed' system (3).
- IJOB (input) INTEGER
- Specifies what kind of functionality to be performed.
=0: solve (1) only.
=1: A contribution from this subsystem to a Frobenius norm-based estimate of the separation between two matrix pairs is computed. (look ahead strategy is used). =2: A contribution from this subsystem to a Frobenius norm-based estimate of the separation between two matrix pairs is computed. (DGECON on sub-systems is used.) Not referenced if TRANS = 'T'. - M (input) INTEGER
- On entry, M specifies the order of A and D, and the row dimension of C, F, R and L.
- N (input) INTEGER
- On entry, N specifies the order of B and E, and the column dimension of C, F, R and L.
- A (input) COMPLEX*16 array, dimension (LDA, M)
- On entry, A contains an upper triangular matrix.
- LDA (input) INTEGER
- The leading dimension of the matrix A. LDA >= max(1, M).
- B (input) COMPLEX*16 array, dimension (LDB, N)
- On entry, B contains an upper triangular matrix.
- LDB (input) INTEGER
- The leading dimension of the matrix B. LDB >= max(1, N).
- C (input/ output) COMPLEX*16 array, dimension (LDC, N)
- On entry, C contains the right-hand-side of the first matrix equation in (1). On exit, if IJOB = 0, C has been overwritten by the solution R.
- LDC (input) INTEGER
- The leading dimension of the matrix C. LDC >= max(1, M).
- D (input) COMPLEX*16 array, dimension (LDD, M)
- On entry, D contains an upper triangular matrix.
- LDD (input) INTEGER
- The leading dimension of the matrix D. LDD >= max(1, M).
- E (input) COMPLEX*16 array, dimension (LDE, N)
- On entry, E contains an upper triangular matrix.
- LDE (input) INTEGER
- The leading dimension of the matrix E. LDE >= max(1, N).
- F (input/ output) COMPLEX*16 array, dimension (LDF, N)
- On entry, F contains the right-hand-side of the second matrix equation in (1). On exit, if IJOB = 0, F has been overwritten by the solution L.
- LDF (input) INTEGER
- The leading dimension of the matrix F. LDF >= max(1, M).
- SCALE (output) DOUBLE PRECISION
- On exit, 0 <= SCALE <= 1. If 0 < SCALE < 1, the solutions R and L (C and F on entry) will hold the solutions to a slightly perturbed system but the input matrices A, B, D and E have not been changed. If SCALE = 0, R and L will hold the solutions to the homogeneous system with C = F = 0. Normally, SCALE = 1.
- RDSUM (input/output) DOUBLE PRECISION
- On entry, the sum of squares of computed contributions to the Dif-estimate under computation by ZTGSYL, where the scaling factor RDSCAL (see below) has been factored out. On exit, the corresponding sum of squares updated with the contributions from the current sub-system. If TRANS = 'T' RDSUM is not touched. NOTE: RDSUM only makes sense when ZTGSY2 is called by ZTGSYL.
- RDSCAL (input/output) DOUBLE PRECISION
- On entry, scaling factor used to prevent overflow in RDSUM. On exit, RDSCAL is updated w.r.t. the current contributions in RDSUM. If TRANS = 'T', RDSCAL is not touched. NOTE: RDSCAL only makes sense when ZTGSY2 is called by ZTGSYL.
- INFO (output) INTEGER
- On exit, if INFO is set to
=0: Successful exit
<0: If INFO = -i, input argument number i is illegal.
>0: The matrix pairs (A, D) and (B, E) have common or very close eigenvalues.
FURTHER DETAILS
Based on contributions by
Bo Kagstrom and Peter Poromaa, Department of Computing Science,
Umea University, S-901 87 Umea, Sweden.