man zunglq (Fonctions bibliothèques) - generate an M-by-N complex matrix Q with orthonormal rows,
NAME
ZUNGLQ - generate an M-by-N complex matrix Q with orthonormal rows,
SYNOPSIS
- SUBROUTINE ZUNGLQ(
- M, N, K, A, LDA, TAU, WORK, LWORK, INFO )
- INTEGER INFO, K, LDA, LWORK, M, N
- COMPLEX*16 A( LDA, * ), TAU( * ), WORK( * )
PURPOSE
ZUNGLQ generates an M-by-N complex matrix Q with orthonormal rows, which is defined as the first M rows of a product of K elementary
reflectors of order N
as returned by ZGELQF.
ARGUMENTS
- M (input) INTEGER
- The number of rows of the matrix Q. M >= 0.
- N (input) INTEGER
- The number of columns of the matrix Q. N >= M.
- K (input) INTEGER
- The number of elementary reflectors whose product defines the matrix Q. M >= K >= 0.
- A (input/output) COMPLEX*16 array, dimension (LDA,N)
- On entry, the i-th row must contain the vector which defines the elementary reflector H(i), for i = 1,2,...,k, as returned by ZGELQF in the first k rows of its array argument A. On exit, the M-by-N matrix Q.
- LDA (input) INTEGER
- The first dimension of the array A. LDA >= max(1,M).
- TAU (input) COMPLEX*16 array, dimension (K)
- TAU(i) must contain the scalar factor of the elementary reflector H(i), as returned by ZGELQF.
- WORK (workspace/output) COMPLEX*16 array, dimension (LWORK)
- On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
- LWORK (input) INTEGER
- The dimension of the array WORK. LWORK >= max(1,M). For optimum performance LWORK >= M*NB, where NB is the optimal blocksize.
If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA.
- INFO (output) INTEGER
- = 0: successful exit;
< 0: if INFO = -i, the i-th argument has an illegal value