man zunmbr (Fonctions bibliothèques) - VECT = 'Q', ZUNMBR overwrites the general complex M-by-N matrix C with SIDE = 'L' SIDE = 'R' TRANS = 'N'
NAME
ZUNMBR - VECT = 'Q', ZUNMBR overwrites the general complex M-by-N matrix C with SIDE = 'L' SIDE = 'R' TRANS = 'N'
SYNOPSIS
- SUBROUTINE ZUNMBR(
- VECT, SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK, LWORK, INFO )
- CHARACTER SIDE, TRANS, VECT
- INTEGER INFO, K, LDA, LDC, LWORK, M, N
- COMPLEX*16 A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * )
PURPOSE
If VECT = 'Q', ZUNMBR overwrites the general complex M-by-N matrix C with SIDE = 'L' SIDE = 'R' TRANS = 'N': Q * C C * Q TRANS = 'C': Q**H * C C * Q**H
If VECT = 'P', ZUNMBR overwrites the general complex M-by-N matrix C
with
SIDE = 'L' SIDE = 'R'
TRANS = 'N': P * C C * P
TRANS = 'C': P**H * C C * P**H
Here Q and P**H are the unitary matrices determined by ZGEBRD when
reducing a complex matrix A to bidiagonal form: A = Q * B * P**H. Q
and P**H are defined as products of elementary reflectors H(i) and
G(i) respectively.
Let nq = m if SIDE = 'L' and nq = n if SIDE = 'R'. Thus nq is the
order of the unitary matrix Q or P**H that is applied.
If VECT = 'Q', A is assumed to have been an NQ-by-K matrix:
if nq >= k, Q = H(1) H(2) . . . H(k);
if nq < k, Q = H(1) H(2) . . . H(nq-1).
If VECT = 'P', A is assumed to have been a K-by-NQ matrix:
if k < nq, P = G(1) G(2) . . . G(k);
if k >= nq, P = G(1) G(2) . . . G(nq-1).
ARGUMENTS
- VECT (input) CHARACTER*1
- = 'Q': apply Q or Q**H;
= 'P': apply P or P**H. - SIDE (input) CHARACTER*1
= 'L': apply Q, Q**H, P or P**H from the Left;
= 'R': apply Q, Q**H, P or P**H from the Right.- TRANS (input) CHARACTER*1
= 'N': No transpose, apply Q or P;
= 'C': Conjugate transpose, apply Q**H or P**H.- M (input) INTEGER
- The number of rows of the matrix C. M >= 0.
- N (input) INTEGER
- The number of columns of the matrix C. N >= 0.
- K (input) INTEGER
- If VECT = 'Q', the number of columns in the original matrix reduced by ZGEBRD. If VECT = 'P', the number of rows in the original matrix reduced by ZGEBRD. K >= 0.
- A (input) COMPLEX*16 array, dimension
- (LDA,min(nq,K)) if VECT = 'Q' (LDA,nq) if VECT = 'P' The vectors which define the elementary reflectors H(i) and G(i), whose products determine the matrices Q and P, as returned by ZGEBRD.
- LDA (input) INTEGER
- The leading dimension of the array A. If VECT = 'Q', LDA >= max(1,nq); if VECT = 'P', LDA >= max(1,min(nq,K)).
- TAU (input) COMPLEX*16 array, dimension (min(nq,K))
- TAU(i) must contain the scalar factor of the elementary reflector H(i) or G(i) which determines Q or P, as returned by ZGEBRD in the array argument TAUQ or TAUP.
- C (input/output) COMPLEX*16 array, dimension (LDC,N)
- On entry, the M-by-N matrix C. On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q or P*C or P**H*C or C*P or C*P**H.
- LDC (input) INTEGER
- The leading dimension of the array C. LDC >= max(1,M).
- WORK (workspace/output) COMPLEX*16 array, dimension (LWORK)
- On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
- LWORK (input) INTEGER
- The dimension of the array WORK. If SIDE = 'L', LWORK >= max(1,N); if SIDE = 'R', LWORK >= max(1,M). For optimum performance LWORK >= N*NB if SIDE = 'L', and LWORK >= M*NB if SIDE = 'R', where NB is the optimal blocksize.
If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA.
- INFO (output) INTEGER
- = 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value