Pages du manuel Linux : Fonctions des bibliothèques

printw
print formatted output in curses windows
print_time_table
parse_time ,
prioqueue
Create and manipulate prioqueue objects
private.h
Declaration of ccRTP internal stuff.
proc
Create a Tcl procedure
Proc::Daemon
Run Perl program as a daemon process
Proc::InvokeEditor
Perl extension for starting a text editor
Proc::Killall
Kill all instances of a process by pattern matching the command-line
Proc::Killfam
kill a list of pids, and all their sub-children
Proc::PID::File
a module to manage process id files
Proc::ProcessTable
Perl extension to access the unix process table
Proc::ProcessTable::Process
Perl process objects
Proc::SyncExec
Spawn processes but report exec() errors
Proc::WaitStat
Interpret and act on wait() status values
process.h
Process services.
proc_lib
Plug-in Replacements for spawn/1,2,3,4, spawn_link/1,2,3,4, and spawn_opt/2,3,4,5.
profil
Suivi du temps d'exécution.
profiler
Tcl source code profiler
projectors
promptdialog
Create and manipulate a prompt dialog widget
proplists
Support functions for property lists
Protocol
Protocols are used for processing transactional requests such as those performed thru modules, but thru a TCP protocol. resolved network protocol session interface.
ProtocolRevision
See AllPlanes.3
ProtocolVersion
See AllPlanes.3
Psad
Perl extension for psad (the Port Scan Attack Detector) daemons
pscsum1
return the sum of absolute values of a complex distributed vector sub( X ) in ASUM,
psdbsv
solve a system of linear equations A(1:N, JA:JA+N-1) * X = B(IB:IB+N-1, 1:NRHS)
psdbtrf
compute a LU factorization of an N-by-N real banded diagonally dominant-like distributed matrix with bandwidth BWL, BWU
psdbtrs
solve a system of linear equations A(1:N, JA:JA+N-1) * X = B(IB:IB+N-1, 1:NRHS)
psdbtrsv
solve a banded triangular system of linear equations A(1:N, JA:JA+N-1) * X = B(IB:IB+N-1, 1:NRHS)
psdtsv
solve a system of linear equations A(1:N, JA:JA+N-1) * X = B(IB:IB+N-1, 1:NRHS)
psdttrf
compute a LU factorization of an N-by-N real tridiagonal diagonally dominant-like distributed matrix A(1:N, JA:JA+N-1)
psdttrs
solve a system of linear equations A(1:N, JA:JA+N-1) * X = B(IB:IB+N-1, 1:NRHS)
psdttrsv
solve a tridiagonal triangular system of linear equations A(1:N, JA:JA+N-1) * X = B(IB:IB+N-1, 1:NRHS)
pselect
See select.3posix
psgbsv
solve a system of linear equations A(1:N, JA:JA+N-1) * X = B(IB:IB+N-1, 1:NRHS)
psgbtrf
compute a LU factorization of an N-by-N real banded distributed matrix with bandwidth BWL, BWU
psgbtrs
solve a system of linear equations A(1:N, JA:JA+N-1) * X = B(IB:IB+N-1, 1:NRHS)
psgebd2
reduce a real general M-by-N distributed matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) to upper or lower bidiagonal form B by an orthogonal transformation
psgebrd
reduce a real general M-by-N distributed matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) to upper or lower bidiagonal form B by an orthogonal transformation
psgecon
estimate the reciprocal of the condition number of a general distributed real matrix A(IA:IA+N-1,JA:JA+N-1), in either the 1-norm or the infinity-norm, using the LU factorization computed by PSGETRF
psgeequ
compute row and column scalings intended to equilibrate an M-by-N distributed matrix sub( A ) = A(IA:IA+N-1,JA:JA:JA+N-1) and reduce its condition number
psgehd2
reduce a real general distributed matrix sub( A ) to upper Hessenberg form H by an orthogonal similarity transforma- tion
psgehrd
reduce a real general distributed matrix sub( A ) to upper Hessenberg form H by an orthogonal similarity transforma- tion
psgelq2
compute a LQ factorization of a real distributed M-by-N matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) = L * Q
psgelqf
compute a LQ factorization of a real distributed M-by-N matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) = L * Q
psgels
solve overdetermined or underdetermined real linear systems involving an M-by-N matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1),
psgeql2
compute a QL factorization of a real distributed M-by-N matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) = Q * L
psgeqlf
compute a QL factorization of a real distributed M-by-N matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1) = Q * L
psgeqpf
compute a QR factorization with column pivoting of a M-by-N distributed matrix sub( A ) = A(IA:IA+M-1,JA:JA+N-1)