Pages du manuel Linux : Fonctions des bibliothèques

draw_trans_rle_sprite
Draws a translucent RLE sprite. Allegro game programming library.
draw_trans_sprite
Draws a sprite blending it with the destination. Allegro game programming library.
Driver
The driver class represents an abstract means of accessing the internals of a Bayonne driver plug-in module. Bayonne driver interface class.
driver
command-processing loop of the form system
driver
command-processing loop of the menu system
drscl
multiplie an n-element real vector x by the real scalar 1/a
dsa
Digital Signature Algorithm
DSA_do_sign
raw DSA signature operations
DSA_dup_DH
create a DH structure out of DSA structure
DSA_generate_key
generate DSA key pair
DSA_generate_parameters
generate DSA parameters
DSA_get_ex_new_index
add application specific data to DSA structures
DSA_new
allocate and free DSA objects
DSA_set_method
select DSA method
DSA_sign
DSA signatures
DSA_SIG_new
allocate and free DSA signature objects
DSA_size
get DSA signature size
dsbev
compute all the eigenvalues and, optionally, eigenvectors of a real symmetric band matrix A
dsbevd
compute all the eigenvalues and, optionally, eigenvectors of a real symmetric band matrix A
dsbevx
compute selected eigenvalues and, optionally, eigenvectors of a real symmetric band matrix A
dsbgst
reduce a real symmetric-definite banded generalized eigenproblem A*x = lambda*B*x to standard form C*y = lambda*y,
dsbgv
compute all the eigenvalues, and optionally, the eigenvectors of a real generalized symmetric-definite banded eigenproblem, of the form A*x=(lambda)*B*x
dsbgvd
compute all the eigenvalues, and optionally, the eigenvectors of a real generalized symmetric-definite banded eigenproblem, of the form A*x=(lambda)*B*x
dsbgvx
compute selected eigenvalues, and optionally, eigenvectors of a real generalized symmetric-definite banded eigenproblem, of the form A*x=(lambda)*B*x
dsbmv
perform the matrix-vector operation y := alpha*A*x + beta*y,
dsbtrd
reduce a real symmetric band matrix A to symmetric tridiagonal form T by an orthogonal similarity transformation
dsecnd
return the user time for a process in seconds
dsignal.h
Contains the API for serializing signals to a pipe for usage with select() or poll().
dspcon
estimate the reciprocal of the condition number (in the 1-norm) of a real symmetric packed matrix A using the factorization A = U*D*U**T or A = L*D*L**T computed by DSPTRF
dspev
compute all the eigenvalues and, optionally, eigenvectors of a real symmetric matrix A in packed storage
dspevd
compute all the eigenvalues and, optionally, eigenvectors of a real symmetric matrix A in packed storage
dspevx
compute selected eigenvalues and, optionally, eigenvectors of a real symmetric matrix A in packed storage
dspgst
reduce a real symmetric-definite generalized eigenproblem to standard form, using packed storage
dspgv
compute all the eigenvalues and, optionally, the eigenvectors of a real generalized symmetric-definite eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x
dspgvd
compute all the eigenvalues, and optionally, the eigenvectors of a real generalized symmetric-definite eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x
dspgvx
compute selected eigenvalues, and optionally, eigenvectors of a real generalized symmetric-definite eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x
dspmv
perform the matrix-vector operation y := alpha*A*x + beta*y,
dspr
perform the symmetric rank 1 operation A := alpha*x*x' + A,
dspr2
perform the symmetric rank 2 operation A := alpha*x*y' + alpha*y*x' + A,
dsprfs
improve the computed solution to a system of linear equations when the coefficient matrix is symmetric indefinite and packed, and provides error bounds and backward error estimates for the solution
dspsv
compute the solution to a real system of linear equations A * X = B,
dspsvx
use the diagonal pivoting factorization A = U*D*U**T or A = L*D*L**T to compute the solution to a real system of linear equations A * X = B, where A is an N-by-N symmetric matrix stored in packed format and X and B are N-by-NRHS matrices
dsptrd
reduce a real symmetric matrix A stored in packed form to symmetric tridiagonal form T by an orthogonal similarity transformation
dsptrf
compute the factorization of a real symmetric matrix A stored in packed format using the Bunch-Kaufman diagonal pivoting method
dsptri
compute the inverse of a real symmetric indefinite matrix A in packed storage using the factorization A = U*D*U**T or A = L*D*L**T computed by DSPTRF
dsptrs
solve a system of linear equations A*X = B with a real symmetric matrix A stored in packed format using the factorization A = U*D*U**T or A = L*D*L**T computed by DSPTRF
dstebz
compute the eigenvalues of a symmetric tridiagonal matrix T
dstedc
compute all eigenvalues and, optionally, eigenvectors of a symmetric tridiagonal matrix using the divide and conquer method
dstegr
compute selected eigenvalues and, optionally, eigenvectors of a real symmetric tridiagonal matrix T
dstein
compute the eigenvectors of a real symmetric tridiagonal matrix T corresponding to specified eigenvalues, using inverse iteration